ETOCXO2020C-10MHz-A-V High-Temperature and High Stability OCXO ### **Features and Benefits** Temperature stability: 10 ppb for (-40 to +130)°C Low Phase noise: -170 dBc/Hz @ 100kHz Low aging: ±0.3 ppb/day, 30 ppb/year Allan Variance: ±5 x 10⁻¹²/s Frequency range from 5 to 30 MHz #### **Typical Applications** Cellular Base Stations Instrumentation Stratum 3 Clock Systems Microwave Communication Radar reference ## **Description** The ETOCXO family of extreme temperature ovenized oscillators is able to maintain low parts per billion stabilities even at ambient temperatures as high as +130°C. Proprietary high temperature materials / processing techniques allow the product to achieve highly stable output and superior long term reliability. # **Mechanical Drawing & Pin Connections** Drawing No: MD140078-2 | Pin | Signal | | | | | | |-----|-------------------|--|--|--|--|--| | 1 | RF OUT | | | | | | | 2 | GND | | | | | | | 3 | Electrical tuning | | | | | | | 4 | Reference voltage | | | | | | | 5 | +V Supply | | | | | | Unit: mm #### ETOCXO2020C-10MHz-A-V High-Temperature and High Stability OCXO ## **Specifications** | Specification | OCXO
Specification | | Sym | Condition | Value | | | Unit | Nete | |---|-----------------------|--------------------|-----------------|---------------------------|---------|---------|----------|--------|-----------------| | Sine Level Load R _L Sine Level Load R _L Sine Load R _L Sine Load R _L Sine Load R _L Sine Sine Load R _L Sine Sine Load R _L Sine | | | Sylli | Condition | Min. | Тур. | Max. | Unit | Note | | Level | Frequency Range | | Fo | | | 10 | | MHz | | | Mave | RF Output | | | | | | | | | | Option Harmonics Level None -25 dBc Spurious Level None None Power Supply Voltage V _{cc} 4.75 5.0 5.25 ∨ Power Consumption Warm-up state Steady state, +25°C 1 1.2 W Warm-up Time t _{up} To Δff ₀ = 1e-7 at 25°C 1 1.2 W Frequency Control Control Voltage Range V _c 0 4.2 V Positive tuning slope Tuning Range 1.4.1 4.2 4.3 V Positive tuning slope Reference Voltage V _{ref} 4.1 4.2 4.3 V Frequency Stability **S. Temperature **Positive tuning slope vs. Temperature **Positive tuning slope **Positive tuning slope vs. Supply Voltage Ref. V _{cc} Vp. **I-1 ppb vs. Supply Voltage Ref. V _{cc} Vp. **I-1 ppb vs. Supply Voltage Ref. V _{cc} Vp. **I-1 ppb | Sine | Level | | | +6 | +8 | +10 | dBm | | | Spurious Level Power Supply | Wave | Load | R∟ | | | 50 | | Ohm | | | Voltage | Option | Harmonics Level | | | | | -25 | dBc | | | Variable | | Spurious Level | | | | None | | | | | Power Consumption Warm-up state Steady state , ±25°C 1 1.2 W | Power Sup | pply | | | | | | | | | Steady state, +25°C | Voltage | | V _{cc} | | 4.75 | | | | | | SteBady State, +25°C 1 1.2 W | Power Con | eumption | | | | 3.2 | | | | | Varm-up Time | rower Consumption | | | Steady state, +25°C | | 11 | 1.2 | W | | | Control Voltage Range | Warm-up Time | | t _{up} | | | | 180 | s | frequency after | | Tuning Range | Frequency | Control | | | | | | | | | Tuning Range +/-0.35 +/-1 ppm Reference Voltage V _{ref} 4.1 4.2 4.3 V Frequency Stability vs. Temperature -40°C to +130°C, ref. 25°C +/-10 ppb vs. Supply Voltage Ref. V _{cc} typ. +/-1 ppb vs. Acceleration Worst direction +/-0.5 +/-1 ppb/G Aging Per Day After 30 days of operation 0.3 0.5 ppb First Year Operation 0.5 ppb Phase Noise 1Hz -110 -100 ppb 10Hz -135 -125 dBc/Hz 10Hz -163 -155 -145 dBc/Hz Allan Variance 1s 5 e-12 e-12 Environmental -60°C to +130°C -40°C | , , | | V _c | | 0 | | 4.2 | V | | | Reference Voltage | Tuning Range | | | | +/-0.35 | +/-1 | | ppm | | | vs. Temperature -40°C to +130°C, ref. 25°C +/-10 ppb vs. Supply Voltage Ref. V _{cc} typ. +/-1 ppb vs. Acceleration Worst direction +/-0.5 +/-1 ppb/G vs. Acceleration Worst direction +/-0.5 +/-1 ppb/G Aging Per Day After 30 days of operation 0.3 0.5 ppb First Year Popb 30 50 ppb Phase Noise 1Hz -110 -100 100 10Hz -135 -125 100 | | | V_{ref} | | 4.1 | 4.2 | 4.3 | | | | Vs. Supply Voltage Ref. V _{oc} typ. +/-1 ppb vs. Acceleration Worst direction +/-0.5 +/-1 ppb Vs. Acceleration Worst direction +/-0.5 +/-1 ppb Aging Per Day First Year 0.3 0.5 ppb For 20 Years Poperation 0.5 ppb Phase Noise 1Hz -110 -100 100 100Hz -135 -125 100Hz 11Hz -110 -100 100Hz 100Hz -155 -145 100Hz -155 -145 100Hz -155 -145 100Hz -155 -145 100Hz -170 -168 100Hz -170 - | | | | | | | | | | | Vos. Acceleration | vs. Temperature | | | | | | +/-10 | ppb | | | Per Day After 30 days of operation 30 50 ppb ppb | vs. Supply Voltage | | | Ref. V _{cc} typ. | | +/-1 | | ppb | | | Aging First Year For 20 Years | vs. Acceler | vs. Acceleration | | Worst direction | +/-0.5 | | +/-1 | ppb/G | | | Phase Noise | | | | After 20 days of | | | | ppb | | | Phase Noise | Aging | | | | 30 | | | ppb | | | Phase Noise | | | | operation | | 0.5 | | ppm | | | Note | Phase Nois | se | <u> </u> | | | | | | | | 100Hz | | | | | | | | | | | 1kHz | | | | | | | | | | | 1kHz | Phase Noise | | | | | | | dBc/Hz | | | 100kHz | | | | | | | | 4 | | | Allan Variance 1s 5 e-12 Environmental Operating Temperature Range -40°C to +130°C Storage Temperature Range -60°C to +130°C Humidity Hermetically sealed Mechanical Shock Per MIL-STD-202, 30G half sine pulse, 11ms (500G, 1ms - optionally) Vibration Per MIL-STD-202, 10G swept sine 10 to 500Hz | | | | | | | | 4 | | | Environmental Operating Temperature Range -40°C to +130°C Storage Temperature Range -60°C to +130°C Humidity Hermetically sealed Mechanical Shock Per MIL-STD-202, 30G half sine pulse, 11ms (500G, 1ms - optionally) Vibration Per MIL-STD-202, 10G swept sine 10 to 500Hz | Allen Verience | | | | | -1/0 | | - 10 | | | Operating Temperature Range Storage Temperature Range -60°C to +130°C Humidity Hermetically sealed Mechanical Shock Per MIL-STD-202, 30G half sine pulse, 11ms (500G, 1ms - optionally) Vibration Per MIL-STD-202, 10G swept sine 10 to 500Hz | | | | 18 | 5 | <u></u> | <u> </u> | e-12 | | | Storage Temperature Range -60°C to +130°C Humidity Hermetically sealed Mechanical Shock Per MIL-STD-202, 30G half sine pulse, 11ms (500G, 1ms - optionally) Vibration Per MIL-STD-202, 10G swept sine 10 to 500Hz | | | 40°C to 1 | 120°C | | | | | | | Humidity Hermetically sealed Mechanical Shock Per MIL-STD-202, 30G half sine pulse, 11ms (500G, 1ms - optionally) Vibration Per MIL-STD-202, 10G swept sine 10 to 500Hz | | | -60°C to +130°C | | | | | | | | Mechanical ShockPer MIL-STD-202, 30G half sine pulse, 11ms (500G, 1ms - optionally)VibrationPer MIL-STD-202, 10G swept sine 10 to 500Hz | | imperature ivarige | | | | | | | | | Vibration Per MIL-STD-202, 10G swept sine 10 to 500Hz | | I Shock | Conditions | | | | | | | |